Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Clifton E. F. Rickard,*
Margaret A. Brimble, Gabrielle
Pavia and Ralph J. Stevenson

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
c.rickard@auckland.ac.nz

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.065$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-2-(2-Naphthyl)-3-(phenyIselenyl)tetrahydropyran

The crystal structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{OSe}$, has established the absolute configuration and shows that the tetrahydrofuran ring adopts a chair conformation, with both the phenylselenyl and naphthyl substituents occupying equatorial positions.

Comment

As part of a programme directed towards the synthesis of aryl C-glycosides (Brimble et al., 2002), selenoetherification of γ-hydroxyalkenes was a key step. Analysis of the stereochemical outcome of the selenoetherification step was important for the overall synthetic strategy. We therefore analysed the stereochemical outcome of the selenoetherification of an (E) - γ-hydroxyalkene and established the structure of the major selenoetherification product by X-ray crystallography. The major product obtained from selenoetherification of (E)-5-naphthylpent-4-en-1-ol was the transselenide, (I), arising from 6-endo cyclization of the transition state. The X-ray structure (Fig. 1 and Table 1) clearly shows that the tetrahydrofuran ring adopts a chair conformation, with the phenylselenyl and naphthyl substituents both occupying equatorial positions.

(I)

The selenide (I) also has a π interaction between the phenyl group and the naphthyl group. These aromatic rings are approximately parallel, with the angle between the planes being $18.8(1)^{\circ}$ and the average separation $3.6 \AA$. There are no significant intermolecular interactions.

Experimental

Phenylselenenyl chloride ($180 \mathrm{mg}, 0.94 \mathrm{mmol}$) was added to a cooled solution (195 K) of trans-5-naphthylpent-4-en-1-ol, (2) (100 mg , 0.47 mmol), in dichloromethane (3 ml) under nitrogen. After 4 h , the reaction was diluted using dichloromethane (7 ml) and sequentially washed with two portions of saturated sodium bicarbonate $(2 \times$ 7 ml). The aqueous fraction was then further extracted using three

Received 11 July 2002 Accepted 23 July 2002 Online 31 July 2002

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids (Siemens, 1995).
portions of dichloromethane $(3 \times 10 \mathrm{ml})$. The organic fractions were combined, washed with brine and dried over MgSO_{4}. The organic fraction was reduced under vacuum to yield a white solid. Recrystallization of the crude product from ethyl acetate-hexane (1:19) afforded the title selenide, (I) ($148 \mathrm{mg}, 86 \%$), as opaque prisms. M.p. $354-355 \mathrm{~K}$. A prism was cut to give a suitably sized sample for the diffraction analysis Analysis, found: $M^{+}=368.0639 . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{OSe}$ requires $M=368.0679 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}: 1647,1098,1072,1022,816$, $741,692,668 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, p.p.m.) : $1.62-1.67\left(1 \mathrm{H}, m, \mathrm{H}-5_{A}\right)$, 1.70-1.84 ($2 \mathrm{H}, m, \mathrm{H}-4_{A}, \mathrm{H}-5_{B}$), 2.22-2.27 $\left(1 \mathrm{H}, m, \mathrm{H}-4_{B}\right), 3.42(1 \mathrm{H}$, $\left.d d d, J_{2 \mathrm{ax}, 3 \mathrm{ax}}=11.0, J_{3 \mathrm{ax}, 4 \mathrm{ax}}=11.0, \mathrm{~J}_{3 \mathrm{ax}, 4 \mathrm{eq}}=3.9 \mathrm{MHz}, \mathrm{H}-3_{\mathrm{ax}}\right), 3.57(1 \mathrm{H}$, $\left.d d d, J_{6 \mathrm{ax}, 6 \mathrm{eq}}=11.6, J_{6 \mathrm{ax}, 5 \text { ax }}=11.6, J_{6 \mathrm{ax}, 5 \mathrm{eq}}=2.2 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{ax}}\right), 4.03-4.09$ $\left(1 \mathrm{H}, m, \mathrm{H}-6_{\text {eq }}\right), 4.38\left(1 \mathrm{H}, d, J_{2 \mathrm{ax}, 3 \mathrm{ax}}=10.4 \mathrm{~Hz}, \mathrm{H}-2_{\text {ax }}\right), 6.90-7.70(12 \mathrm{H}$, m, ArH$). \delta \mathrm{C}\left(300 \mathrm{MHz}\right.$, p.p.m.): $27.9\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 32.6\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 46.1$ $(\mathrm{CH}, \mathrm{C}-3), 68.7\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 85.7(\mathrm{CH}, \mathrm{C}-2), 125.0(\mathrm{CH}, \mathrm{Ar}), 125.7$ (CH, Ar), 127.0 (CH, Ar), 127.4 (CH, Ar), 127.5 (CH, Ar), 127.9 (CH, Ar), 128.0 (CH, Ar), 128.4 (CH, Ar), 133.0 (quat., Ar), 133.3 (quat., Ar), 135.5 (CH, Ar), 137.5 (quat., Ar).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{OSe}$
$M_{r}=367.33$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.1766$ (2) \AA
$b=8.8854$ (2) \AA
$c=23.0888$ (3) \AA
$V=1677.46(4) \AA^{3}$
$Z=4$
$D_{x}=1.455 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 8192
reflections
$\theta=2-26^{\circ}$
$\mu=2.24 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Irregular fragment, colourless
$0.42 \times 0.36 \times 0.18 \mathrm{~mm}$

Data collection

Siemens SMART diffractometer
ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.439, T_{\text {max }}=0.667$
10162 measured reflections
3416 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.065$
$S=1.00$
3416 reflections
212 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Se}-\mathrm{C} 1^{\prime \prime}$	$1.928(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.535(3)$
$\mathrm{Se}-\mathrm{C} 3$	$1.978(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.535(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.440(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.529(4)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.436(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.504(4)$
$\mathrm{C} 2-\mathrm{C} 2^{\prime}$	$1.516(3)$		
$\mathrm{C}^{\prime \prime}-\mathrm{Se}-\mathrm{C} 3$	$103.81(10)$	$\mathrm{C}^{\prime \prime}-\mathrm{Se}-\mathrm{C} 3$	$103.81(10)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6$	$111.39(18)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6$	$111.39(18)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 2^{\prime}$	$107.06(17)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 2^{\prime}$	$107.06(17)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$109.4(18)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$109.40(18)$
$\mathrm{C} 2^{\prime}-\mathrm{C} 2-\mathrm{C} 3$	$112.84(17)$	$\mathrm{C} 2^{\prime}-\mathrm{C} 2-\mathrm{C} 3$	$112.84(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$110.40(19)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$110.40(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Se}$	$111.73(14)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Se}$	$111.73(14)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Se}$	$105.73(16)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Se}$	$105.73(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$110.2(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$110.2(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$110.0(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$110.0(2)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$111.9(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$111.9(2)$

H atoms were clearly resolved in difference maps. They have been refined using a riding model, with $U_{\text {iso }}$ values constrained to be 1.2 times $U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brimble, M. A., Pavia, G. S. \& Stevenson, R. J. (2002). Tetrahedron Lett. 43, 1735-1738.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SHELXTL, SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

