Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Clifton E. F. Rickard,* Margaret A. Brimble, Gabrielle Pavia and Ralph J. Stevenson

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: c.rickard@auckland.ac.nz

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.004 Å R factor = 0.026 wR factor = 0.065 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. *trans*-2-(2-Naphthyl)-3-(phenylselenyl)tetrahydropyran

The crystal structure of the title compound, $C_{21}H_{20}OSe$, has established the absolute configuration and shows that the tetrahydrofuran ring adopts a chair conformation, with both the phenylselenyl and naphthyl substituents occupying equatorial positions.

Received 11 July 2002 Accepted 23 July 2002 Online 31 July 2002

Comment

As part of a programme directed towards the synthesis of aryl C-glycosides (Brimble *et al.*, 2002), selenoetherification of γ -hydroxyalkenes was a key step. Analysis of the stereochemical outcome of the selenoetherification step was important for the overall synthetic strategy. We therefore analysed the stereochemical outcome of the selenoetherification of an (E)- γ -hydroxyalkene and established the structure of the major selenoetherification product by X-ray crystallography. The major product obtained from selenoetherification of (E)-5-naphthylpent-4-en-1-ol was the *trans*selenide, (I), arising from 6-*endo* cyclization of the transition state. The X-ray structure (Fig. 1 and Table 1) clearly shows that the tetrahydrofuran ring adopts a chair conformation, with the phenylselenyl and naphthyl substituents both occupying equatorial positions.

The selenide (I) also has a π interaction between the phenyl group and the naphthyl group. These aromatic rings are approximately parallel, with the angle between the planes being 18.8 (1)° and the average separation 3.6 Å. There are no significant intermolecular interactions.

Experimental

Phenylselenenyl chloride (180 mg, 0.94 mmol) was added to a cooled solution (195 K) of *trans*-5-naphthylpent-4-en-1-ol, (2) (100 mg, 0.47 mmol), in dichloromethane (3 ml) under nitrogen. After 4 h, the reaction was diluted using dichloromethane (7 ml) and sequentially washed with two portions of saturated sodium bicarbonate (2 \times 7 ml). The aqueous fraction was then further extracted using three

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of (I), showing 50% probability displacement ellipsoids (Siemens, 1995).

portions of dichloromethane $(3 \times 10 \text{ ml})$. The organic fractions were combined, washed with brine and dried over MgSO₄. The organic fraction was reduced under vacuum to yield a white solid. Recrystallization of the crude product from ethyl acetate-hexane (1:19) afforded the title selenide, (I) (148 mg, 86%), as opaque prisms. M.p. 354-355 K. A prism was cut to give a suitably sized sample for the diffraction analysis Analysis, found: M^+ = 368.0639. C₂₁H₂₀OSe requires M = 368.0679; v_{max} (film)/cm⁻¹: 1647, 1098, 1072, 1022, 816, 741, 692, 668; δ_H (300 MHz, CDCl₃, p.p.m.): 1.62–1.67 (1H, m, H-5_A), 1.70-1.84 (2H, m, H-4_A, H-5_B), 2.22-2.27 (1H, m, H-4_B), 3.42 (1H, ddd, $J_{2ax,3ax} = 11.0$, $J_{3ax,4ax} = 11.0$, $J_{3ax,4eq} = 3.9$ MHz, H-3_{ax}), 3.57 (1H, ddd, $J_{6ax,6eq} = 11.6$, $J_{6ax,5ax} = 11.6$, $J_{6ax,5eq} = 2.2$ Hz, H-6_{ax}), 4.03–4.09 $(1H, m, H-6_{eq}), 4.38 (1H, d, J_{2ax,3ax} = 10.4 Hz, H-2_{ax}), 6.90-7.70 (12H, d)$ m, ArH). δC (300 MHz, p.p.m.): 27.9 (CH₂, C-4), 32.6 (CH₂, C-5), 46.1 (CH, C-3), 68.7 (CH₂, C-6), 85.7 (CH, C-2), 125.0 (CH, Ar), 125.7 (CH, Ar), 127.0 (CH, Ar), 127.4 (CH, Ar), 127.5 (CH, Ar), 127.9 (CH, Ar), 128.0 (CH, Ar), 128.4 (CH, Ar), 133.0 (quat., Ar), 133.3 (quat., Ar), 135.5 (CH, Ar), 137.5 (quat., Ar).

Crystal data

$C_{21}H_{20}OSe$
$M_r = 367.33$
Orthorhombic, P212121
a = 8.1766 (2) Å
b = 8.8854 (2) Å
c = 23.0888 (3) Å
$V = 1677.46 (4) \text{ Å}^3$
Z = 4
$D_x = 1.455 \text{ Mg m}^{-3}$

Mo K α radiation Cell parameters from 8192 reflections $\theta = 2-26^{\circ}$ $\mu = 2.24 \text{ mm}^{-1}$ T = 150 (2) K Irregular fragment, colourless $0.42 \times 0.36 \times 0.18 \text{ mm}$

Data collection

Siemens SMART diffractometer	3227 reflections with $I > 2\sigma(I)$
w scans	$R_{\rm int} = 0.035$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(Blessing, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.439, \ T_{\max} = 0.667$	$k = 0 \rightarrow 11$
10162 measured reflections	$l = 0 \rightarrow 28$
3416 independent reflections	
Refinement	
\mathbf{P}_{a}	$w = 1/[\sigma^2(E^2) + (0.0366P)^2]$
$\mathbf{R} = \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R}$	$W = 1/[O((\Gamma_0)) + (0.0500F)]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.065$	$(\Delta/\sigma)_{\rm max} = 0.009$
S = 1.00	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
3416 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
212 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	1433 Friedel pairs
	Flack parameter $= 0.013$ (8)

Table 1

Selected geometric parameters (Å, °).

Se-C1"	1.928 (2)	C2-C3	1.535 (3)
Se-C3	1.978 (2)	C3-C4	1.535 (3)
O1-C2	1.440 (3)	C4-C5	1.529 (4)
O1-C6	1.436 (3)	C5-C6	1.504 (4)
C2-C2′	1.516 (3)		
C1″-Se-C3	103.81 (10)	C1″-Se-C3	103.81 (10)
C2-O1-C6	111.39 (18)	C2-O1-C6	111.39 (18)
O1-C2-C2′	107.06 (17)	O1-C2-C2′	107.06 (17)
O1-C2-C3	109.40 (18)	O1-C2-C3	109.40 (18)
C2' - C2 - C3	112.84 (17)	C2' - C2 - C3	112.84 (17)
C2-C3-C4	110.40 (19)	C2-C3-C4	110.40 (19)
C2-C3-Se	111.73 (14)	C2-C3-Se	111.73 (14)
C4-C3-Se	105.73 (16)	C4-C3-Se	105.73 (16)
C5-C4-C3	110.2 (2)	C5-C4-C3	110.2 (2)
C6-C5-C4	110.0 (2)	C6-C5-C4	110.0 (2)
O1-C6-C5	111.9 (2)	O1-C6-C5	111.9 (2)

H atoms were clearly resolved in difference maps. They have been refined using a riding model, with $U_{\rm iso}$ values constrained to be 1.2 times $U_{\rm eq}$ of the carrier atom.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1995); software used to prepare material for publication: *SHELXL*97.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brimble, M. A., Pavia, G. S. & Stevenson, R. J. (2002). Tetrahedron Lett. 43, 1735–1738.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SHELXTL, SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.